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Abstract

Electromagnetic properties for even-even nuclides in neutron-rich
nuclei such s5oSn, 45Cd and 4Pd have been studied through the electric
quadruple transition strength [M(E2)]* w. | and the reduced transition

probability B(E2)w,, |for yo-transition from first 2, excited state to the

0, ground state.
The electric quadruple transition strength |M(E2)[* w. | is calculated
by using life-time for 2, excited state with the intensity of y,-transition,

while B(E2)w., | is extracted from half-life time to 2, state corrected for

internal conversion coefficient.

To obtain precise value for the transition of E2|, the adopted value
for |M(E2)|2W,u¢ and B(E2)w,, | was calculated and plotted as a function
for neutron number.

In present work, the adopted values for the transition of E2| are
converted to B(E2)ex, T €’b® which helped us to study the structure for
nucleus, such as the variation in shape, because the deformation
parameter # is extracted from B(E2) 1 ¢’b® and the study for behavior of
each of B(E2) 1 ¢’b? and $ versus neutron number in isotonic chains to
509N, 48Cd and 4Pd gives good information about the deformation in
nuclei.

Our study focused on the three different types of nuclei, the first
with atomic magic number 50, the second with semi-magic atomic
number 48 and the third nucleus with atomic number between closed
shells 46.

At the end of the present work, the good comparisons for the present
calculation to the values of the B(E2) 1 e’h® and S with most recent
values of experimental and theoretical was done.
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Chapter One
Introduction

An atomic nucleus is the small, heavy, central part of atom consisting
of a nucleons. It has two groups of particles: protons and neutrons each of
these groups is separately distributed over certain energy states, and they
are held together by their mutual interactions which turn out to be very
complicated in detail.

One of the main objectives of study the nuclear physics is to
understand the structure of nuclei, where the electromagnetic transition in
nuclei has become widely used as a source of information about it.

The best studies for electromagnetic transitions modes in nuclei are
those involving transition strength for gamma transition in even-even
nuclei, which is an important parameter use to determine the relative
importance of the collective and single-particle effect to describe the
level structure of the nucleus and transitions modes, and gives us a good
knowledge of the energies, spins, parties and life times of the excited

states in nuclei.

1-1 Gamma-Ray Transition

An excited nucleus may lose energy by emitting a y-ray photon
whose energy E, is equal to the energy difference AE between the initial
and final nuclear states. Gamma radiation is same as any other type of
electromagnetic radiation in which a changing in electric field induces
a magnetic field and vice versa

For a y-transition from an initial state of spin (total angular
momentum) J; and parity 7 to a final state of spin J; and parity 7 , the

transition by emission of a single 2"-pole quantum is possible if :



J, =i <L <49, (L #0) -(1.2)

Where L is the angular momentum of the y-transition.
In such transitions, the parity change of electric radiation, EL, is

given by :
m - =(-1)" .(1.2)
And for magnetic radiation, ML, by :

mmo=(-1)" (1.3)

If the initial and final parities are equal, then M1, E2, M3, E4, M5,
etc. will conserve parity. if the parities of the initial and final states are
different, then, E1, M2, E3, M4, E5, etc, are possible 2.

For the case in which either J; or J; is equal to zero, only a pure
multipole transition is emitted, for example, the first excited state is 2*
(Ji = 2, = = even) (even Z, even N) nuclei decays to the 0" ground state
(Js = 0, 7z = even) through the emission of a pure electric quadrupole E2
transition because the above (1.1, 1.2, 1.3) selection rules gives
immediately L = 2 &,

We have already noted that L = 0 for y-transition is not allowed because
photons with zero angular momentum does not exist, thus the transition is
forbidden between two spin-zero states i.e. (J; = J; = 0) ™.

The single-particle Weisskopf estimates permit us to make some
general predictions about which multipole is most likely to be emitted '),
where the transition associated with each of the possible L values has
a partial decay constant [T, (EL) or T, (ML)] that describes the probability

for such a transition to occur. The Weisskopf estimates has been derived



for approximating transition probabilities as functions of mass number A
and y-ray energy E, ",

The Weisskopf estimates are [*! ;

T (E1)=1.0x10"A*°E’ . (1.4)
T (E2)=7.3x10"A"°E’ ..(1.5)
T (E3)=34x10A°E ...(1.6)
T (E4)=11x10"A*°E’ .(L.7)
T (M1)=56x10"E® ..(1.8)
T, (M2)=35x10"A*"E’ ..(1.9)
T, (M3)=1.6x10 A*°E’ ..(1.10)
T (M4)=45x10"A’E} ..(1.12)

Where T, has units of s ' and E, is in MeV.
Based on the above single-particle estimates, the lowest possible

multipolarity is the most probable for a given transition type (E or M) [,

1-2 Gamma-Ray Reduced Transition Probabilities and

Strengths

Reduced transition probabilities play an important role in nuclear
physics and are in high demand for nuclear model calculations [,
The  Weisskopf single-particle  reduced transition  probability
B(EorM,L)w,, is defined as the ratio of single-particle half-life time to

experimental half-life time for y-transition ¥ :



B (EorM L), = w2(7)(EOM . L)s
My, (7)(EorM L)

..(1.12)
exp

The reduced transition probability has long been a basic observable
in the extraction of the magnitude of nuclear deformation or in probing
anomalies in the nuclear structure ¥ .

While the y-ray transition strength |M(EorM,L)[? w., is defined as the
ratio of experimental gamma width to gamma width in Weisskopf

units 9 -

I'(EorM ,L
( Jos ..(1.13)

M (EorM L), =
‘ ( )‘W-“ 1“(EorM,L)W.u

With recent advances in techniques for supplying intense beams of
unstable nuclei, several exotic properties such as magicity loss have been
discovered in neutron-rich nuclei through measurements of transition

strength ! . More details are given in chapter two.

1-3 Multipole Mixing Ratios (J)

The study of multipole mixing ratios 6 of y-rays from excited
nuclear states have been the subject of interest for many experimental
and theoretical investigations. Experimentally, ¢ -values can be derived
mainly from angular distribution measurements %1 .

Theoretically, the multipole mixing ratios for E2, and M1 mixed
transition can be defined as the ratio of the electric quadrupole E2 to
magnetic dipole M1 matrix elements for y-transition from an initial state
J; to final state J; :

_ i [E2)J;)

5_<‘Jf|\/|]-JI> ...(1.14)



Measurements of E2/M1 mixing ratios of y-transitions in even-even
nuclei have long provided important tests to nuclear models and provide
the most accurate results for comparisons with theoretical calculations

based on different nuclear models ™1 .

The mixing ratio 2, can also be defined as follows ©

_Iy(L+1)

LML)

Where 1, (L) and I, (L+1) are the relative intensities of y-rays transition

5° ..(1.15)

from certain level with mixed multipolarities L and L+1, then the total

relative gamma intensity 1, is given by :

|, =1, (L)+1,(L+1) .(1.16)

1-4 Gamma-Ray Branching Ratios [B.R(y;)]

If two or more y-rays de-excited from the same state, then the

branching ratio of ith y-rays transition is given by ™! :

| .
B.R(77) =" x100% .(1.17)
tot

Where 1,; is the relative intensity of v;.

I, =2.1,; (summation for all y-rays de-excited from certain level).

Other expression for B.R () can be used as suggested by 4 :

L',
r

e

B.R(y,)= ...(1.18)

Where I';; is the partial width of each y-ray.



1-5 Internal Conversion

The internal conversion process is an alternative decay mode to
y-ray emission ™ it is a radioactive decay process where an excited
nucleus interacts with an electron in one of the lower atomic shell
(K, L, M ...) causing the electron to be emitted from the atom. Thus, in an
internal conversion process, a high-energy electron is emitted from the
excited atom . After the electron has been emitted, the atom is left with
a vacancy in one of the inner electron shells. This hole will be filled with
an electron from one of the higher shells and subsequently

a characteristic x-ray or Auger electron will be emitted.

The tendency towards understanding the internal conversion occurs
by conversion coefficient calculation ), which is used to determine the
angular momentum and parity changes of the states involved in the

transition *°, it can be defined as the ratio of de-excitations that go by the

emission of electrons to those that go by y-ray emission i.e. :
a=-—==-"% ..(1.19)

where « is the internal conversion coefficient, I, is the intensity of
conversion electrons and 1, is the intensity of y-ray emission observed
from a decaying nucleus, while T, is the decay probability by the

conversion electrons and T, is the decay probability by y-ray emission 4,

1-6 Deformed Nuclei

Nuclear shapes are indeed extremely useful to understand nuclear

dynamics and the quest regarding shapes of nucleus fascinated scientists



for many years. Although many nuclei are spherical but majority of them
exhibit essentially not just one shape, but different shapes ™",

It is well established that many nuclei with N and Z values between
magic numbers are permanently deformed in their shape, the deformation
arises because of the way valence nucleons arrange themselves in an
unfilled shell, in other words the deformation happens only when both
proton and neutron shells are partially filled ™ .

In general, the nucleus is considered to have spherical shape, but if
the distribution of charges in the nucleus is not spherically symmetric, the
nucleus will have quadrupole moment, such nuclei may be prolate
ellipsoidal which has positive quantity of quadrupole moment.

Or oblate ellipsoidal which has negative quantity of quadrupole moment

as noticed in figure (1-1) 7.

Oblate Nucleus
Quadrupcle Moment < O
——

Spherical Nucleus
Quadrupole Moment = O

Pralate Nucleus

Quodrupole Moment > O

Figure (1-1): Shapes of deformed nuclei 7.



The degree of which a nucleus is deformed is described by the

deformation parameter which is given by 9 :

4( 7% AR
ﬂ—(Sj R, ..(1.20)

Where g is the deformation parameter in relation to the eccentricity an
ellipsoidal nucleus.

AR is the difference between the semi-major and semi-minor axis of the
ellipse.

R,, =average radius=1.3x107"° A"* m

when £ = 0 the nucleus is spherical, When £ > 0 the nucleus has the
elongated form of a prolate ellipsoid, and When g < 0 the nucleus has the

flattened form of an oblate ellipsoid ..

1-7 Previous Studies
Ibbotson R.W. et al. (1998) ! studied the excited states at 1399+ 25
keV and 1084+20 keV for the first time in ***Si. The B(E2; 0, —2,)

values leading to these states and the previously identified 2" states in
32343 have been measured, and are compared to shell model calculations.

Raman S. et al. (2001) ™ collected experimental values for the
reduced electric quadrupole transition probability B(E2)t between
the 0" ground state and the first excited state 2" in even-even nuclides
and given in tables for theoretical physicists to test their predicated

values which were extracted from different nuclear models.



Mehmet Baylan and Ihsan Uluer (2002) *®! used the Rotation-
Vibration Model approach to calculate the multipole mixing ratios
5 (E2/M1), deformation parameter, and quadrupole moments for **°Gd
nucleus.

Deloncle 1. and Roussiere B. (2004) Y showed that the reduced

transition probability B(E2; 0, —2;) of even-even nuclei can be related

to the product of the number of particles by the number of holes of the

valence space. This very simple expression is used to analyze at the same

time the experimental B(E2)1 values of > **Ni and those of ***Zn.
Grawe H. et al. (2005) ! used Coulombs excitation experiments to

measure the reduced transition probabilities B(E2; 0; —2;) for the first

time in the neutron rich ®Ni and °Ni nuclei. These data give different
behavior of the B(E2)71 values in the Ni isotopes versus neutron number.

llyas Inci and Nurettin Turkan (2006) *® estimated energy levels
and multipole mixing ratios 6 (E2/M1) for doubly-even %***° Pd nuclei
using interacting boson model (IBM-2). The results are compared with
previous experimental and theoretical data and it is observed that they
are in good agreement.

Boboshin I. et al. (2007) *"! deformation parameters are obtained by
two different methods: nuclear quadrupole moments Q (“Q-type” data)

and from reduced transition probability B(E2; 0, —2,) (“B-type” data)

for two groups of nuclides: groupl (Ti, Cr, Zr, Nd, Sm, Gd, Dy, Er, W,



Os, Ra), group2 ( C, Si, Ar, Ca, Fe, Ni, Zn, Ge, Se, Kr, Sr, Mo, Ru, Pd,
Cd, Sn, Te, Ba, Yb, Hf, Pt, Pb). It shows that (B-type) data values are
systematically larger than (Q-type) ones .

Ali Abdulwahab.R. (2009) ™! studied the nuclear deformation
parameters of even-even Zirconium 2'%Zr isotopes using deformed and
spherical shell model and corresponding to reduced transition probability
B(E2; 0! —2).

Thomas Behrens (2009) ! the B(E2; 0; —2;) values of neutron-

rich *#'2°Cd (N < 82) and ***'**Xe (N > 82) isotopes both below and
above the shell closure at N = 82 have been measured by coulomb
excitation. The values of **'?°Cd and ***'*****Xe have been measured
for the first time. For '*Xe the B(E2; 2*—4") has also been
determined, and the quadrupole deformation for ****Xe have been taken
into account.

Meeran (2010) B studied the electromagnetic features which are
observed in the nuclei of atomic number between Z =18-44 and neutron
number N=22-68 through the transitions 2"—0"5 .

Kumar R. et al. (2011) B the poorly known B(E2; 0; —2;) values

of ?Sn and **Sn have been measured to high precision. Two Coulomb
excitation experiments were performed to determine the reduced

transition probabilities relative to °Sn in order to minimize the

10



systematic errors. The obtained B(E2) 1 values of 0.242(8) ¢’b® for ***Sn
and 0.232(8) e?b? for **Sn confirm the tendency of large B(E2) 1 values
for the lighter tin isotopes below the midshell '°Sn that has been
observed recently in various radioactive ion beam experiments.
Anagnostatou V. et al. (2011) B electromagnrtic transition rates
have been measured for decays from the ground state band in the

transitional nucleus ®Pd. The lifetime for the 2* state in 1®Pd is deduced
to be 13.3(9) Ps, which corresponds to a B(E2; 2, —0;) of 17.2(1.2) in

W.u.

Kibedi T. et al. (2011) B the internal conversion coefficients for
Z =111 to Z =126 super heavy elements was obtained. The new
conversion coefficient data tables presented here cover all atomic shells
transition energies from 1 keV up to 6000 keV.

Abdullah H.Y. et al. (2011) B studied the systematic 8" isomeric
levels, half-lives, deformation parameters, and reduced transition
probabilities between 8*—6" state of even-even "°Ni to **Pd nuclei for

N = 48 neutrons. The calculated half-lives and quadrupole moments are
compared with the experimental values, and studied the systematic B(E2)
values, intrinsic quadrupole moments as a function of atomic number Z
for N = 48 neutrons.

Bauer C. et al. (2012) ¥ lifetimes of states of **Ba and **°Ba were
obtained for the first time as well as the static electric quadrupole

moments Q(2;) for *****Ba and *****Ba. The B(E2; 2 —0,) values of

11



“ONd and *Sm are calculated and compared to the shell-model
calculations.

Vijay Sai K. et al. (2012) B°! mixing ratios have been determined for
all the M1+E2 transitions in **'Xe for (E, = 80.179, 177.21, 272.5,
318.07, 325.76, 364.48, 404.83, 722.9) in KeV using the experimental ax
values and the corresponding BRICC values for M1 and E2
multipolarities. The experimental B(E2) values were calculated from the
present mixing ratios and « values and the life times of the corresponding
states from the literature.

Fouad A.Majeed (2012) B study the low lying 2* and 4" energies
and the B(E2; 0; —2!) for even-even “**Mg isotopes, good agreement
was obtained in comparing with the recent available experimental and

theoretical. The B(E2; 2; —0;) values for Mg isotopes are more closer to

the experimental values.

Hossain . et al. (2012) *® measured the electric quadrupole reduced
transition probabilities B(E2) between 6° to 4" and 4" to 2" states of
1AL l812204  jsotopes using interacting boson model (IBM-1).
The values of reduced transition probabilities of "**®!812Cd nyclei
from transitions 4° to 2° and 6" to 4" are (0.180 and 0.237) e*’
(0.197 and 0.253) e?b? (0.194 and 0.243) e?b? (0.143 and 0.168) e’b?,
respectively. In addition, the systematic B(E2) values are studied as
a function of neutron numbers from N = 66, 68, 70, 74. The calculated
results of B(E2) are in good agreement with experimental values.

Khalid H.H. Al-Attiah et al. (2013) B¥ studied the excitation
energies and transition rates B(E2; 2; —0;) for even-even '%'%sn nuclei

using shell model.

12



1-8 The Aim of the Present Work

The present work is aimed to study the nuclear structure for some
even-even nuclei through the electric quadrupole transition strengths
IM(E2)[? w.. and reduced transition probabilities B(E2)w., for yo-transition
from first excited 2, state to the 0; ground state.
The good information about the behavior for |M(E2)|2 wu and B(E2)w.
versus neutron number obtained for the following nuclei :
1- 46Pd 102<A<116

2- 45Cd 106 <A<118
3- 5081’1 112§A§ 124

Furthermore, there is another property related to reduce transition
probability which has been calculated such as the deformation parameters
for these nuclei. The obtained results are discussed and compared with the

previous results.

14






Chapter Two
Theory

2-1 Gamma-Ray Transition Probability
For y-ray transition between two nuclear states with spins J; and
Ji , the transition probabilities of electric 2- (EL) and magnetic 2- (ML)

transitions can be written as ! :

Sr(L +1 2b|_ E 2L+1
T, (EL)= L7[[((2L++§!!]2h{hd B(EL)Y (2.1)
And

87(L +1) 2b [ E 2L+1
T,(ML)= f[((zfjg“”]zh [hd B (ML) (2.2)

The constants in these equations are:

h = Plank constant = 4.13566 x107*® KeV. s

# = Reduced Plank constant = h_ 6.58212x107" KeV. s

2
¢ = velocity of light =3x10" cm /s
e’ =1.440x10" KeV. cm (e = electron charge)
i =1.5922x107% KeV. cm® (4, = nuclear magneton)

b =barn =10 cm?

It is obvious from equations (2.1 and 2.2) that the transition
probability decreases drastically with higher multipole order L ©°, it also
becomes clear that the transition probability increases rapidly with the

transition energy ®! .
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B(EL)] and B(ML)| are the reduced downward probabilities for electric
and magnetic transitions respectively. These reduced downward
probabilities may be calculated with the theoretical model for comparison
with experiment %1 .

Weisskopf has derived the following single particle estimates using the

shell model ™ :

1 [ 3 Tha
B..(EL)=B,,,(EL)= 2 IR (2.3
o (BL)=By ()=, | 2] @3

10 [ 3 Toa-
lep(ML):Bwlu(ML):ﬁbL_l 3+J R ..(2.4)

Where R = radius of the nucleus =1.2 x10™ A3 cm

The reduced Weisskopf single-particle transition probability in

a comparison with experimental and theoretical y-ray transitions

probabilities is given by 1

B (EorM ,L
B (EorM ,L),,, = ( )

e ..(2.5
B (EorM ,L) | (2:5)

Numerical values for B(EorM,L)y,, for different multipole transitions are

given in the following equations % ;

B (E1),, V=0.06446 A*° ¢’ (fm)’ .(2.6)
B (E2),, $=0.05940 A** *(fm)’ (2.7)
B(M1), ¥=17905 s .(2.8)
B (M 2), 1=1.6501 A*" 1 ..(2.9)
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The transition probability can also be given by ! :

T =" .(2.10)

Where t is the mean life time of the initial state and is given by :

—_ t1/2
= 1z (211
g In2 ( )
So:
In2
T=— ..(2.12)
t1/2

For the Ky, y-ray of n y-rays de-exciting level, the partial half-life

time for y-ray emission ty,(y) is related to the level half-life time ty, by ©

n

t1/2(7):t1/22(|iy)(1+ai) ..(2.13)

i=1 Ik

Where the summation is over the intensity |/ of all y-rays de-exciting the
level, corrected for the internal conversion coefficient o; , I is the
intensity of Ky, y-ray.

If there is only one gamma transition from j* = 2" state to j © = 0" with
intensity 100% the eq.(2.13) becomes [* ;

t1/2(7’)exp =ty (1+ ) (2.14)

where oy IS the total internal conversion coefficient.
From equations (2.12, 2.3 and 2.1) :

_In2L[(2L +)UPA[3+L 2 nc 2041
2 (P)(EL )y =7 (L +1)e?R? [ 3 HE } ..(2.15)

I
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And from equations (2.12, 2.4 and 2.2) :

In2 L{2L +DW2A [3+L 2 nc T
t2 (7) (ML), = o (LL[ilL);ﬁl)F;gfz[ ;L} {Zﬂ (2.16)

e

Formula for single-particle transition half-life times, corrected for

internal conversion are as follows ! :

_ 6.7622x10°°
1/2(7/)(E1) - 3 2/3 (217)
EXA
9.5235x10°
ty, (7)(E Z)W,u :W ...(2.18)
V4
(/)(E3),, _2 0442 x10" (219)
1/2 2 N U
E/A
_ 6.5003x10*
1/2(7/)(E4) - Eg A8/3 ...(2.20)
V4
_ 2.2017x10° ™
ty2(7)(M1),,, =3 (2.21)
V4
3.1007 x10’
Lz (7/)(M 2)W.u :W ..(2.22)
V4
(/)M 3),, _ 6.6556x10™ (223)
1/2 - 7 A 4/3 2.
E/A
2.1164x10%
ty2(¥)(M 4),,, = .(2.24)

9 A2
ESA

In equations (2.15 to 2.24), ty, is in second and E, in KeV.
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For y-transitions with mixed multipolarities L and L+1, the y-ray half-life

time becomes © :

o (7)" =tyz (7)x(1+6%) .(2.25)
1+ 62
ty, (7)™ =t1/2(7)><52) .(2.26)

Then the multipolarities mixing ratio is given by the expression :

52 — t1/2(7/)L

" ..(2.27)
Ly, (7)L '

2-2 Gamma-Ray Transition Strength
From equation (1.13) the y-ray transition strength |[M[* w. can be
written as :
r

My, == ..(2.28)
W.u FW.U

The partial width of y-ray transition from an initial state with spin J; to

final state with spin J; is given by 1% :

~ 8z(L+1) [E, T
AL +1)”]2{hc} B(L)Y ..(2.29)

If the total width for gamma decay is ™! :

Fy = ZRL ...(2.30)
Then :
h
Fy = — ..(2.31)
T
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For y-transitions with mixed multipolarities L and L+1, the total gamma

width becomes ®!
Fy:F(L)+F(L +1) ..(2.32)

Then the multipolarities mixing ratio can obtained from egs.(2.31,2.27) :

I'(L+1
o = (L +1) ..(2.33)
r(L)
For pure electric dipole E1 or pure quadrupole transition E2, 6 =0 and
hence :
['(El)orT'(E 2):Fy ..(2.34)

The transition strength for pure E2 transition can be obtained using
eq.(1.13) in the form :

‘M (EZ)‘Z _ 1_‘(Ez)exp

Wu F(E Z)W_u ...(2.35)

The following values for the partial gamma widths in Weisskopf
units, can be obtained on the basis of an extreme single particle model
where E, in KeV, Ty, ineV ¥

. (E1)=6.7469x10 A% E® ...(2.36)
I . (E2)=47907x10%A** E® ..(2.37)
I (E3)=22319x10*A* E’ ..(2.38)
I . (E4)=7.0187x10""A" E’ -(2.39)
I . (M1)=2.0722x10E? ...(2.40)
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I we(M2)=14714x10%A*"* E> -(2.41)
I e (M 3)=6.8550x10" A" E’ (2.42)
I wo(M4)=21557x10"A" E’ .(2.43)

From equations.(1.12, 1.13, 2.5, 2.11 and 2.31) it can be concluded for

E2 transition :

2 r'(E 2)exp _t1/2(7)(E Z)S.p

M EDw=rE2),,, "4, ()(E), o
B(E 2)exp

B(E2),

M (E2);,, =B(E2), =

Where ti, (y) (E2)exp corrected for internal conversion coefficient as in
eq.(2.14).
With the aid of equations (2.44, 2.3) can be obtained :

B (EL )oy ...(2.45)

‘M (EL)‘\ZNU =4nb" 2 5L
| [3/(3+L)]'R

And from equations (2.44, 2.4) can be obtained :

YRUTS I
Y10 [3/(3+L)]'R*

..(2.46)

Inserting the value R=1.2 A3 fm in eq.(2.45, 2.46),0ne obtains 4 :

, 155 B(E1) 1550B (E1)

Wu A 2/3 'ez fm?2 A%%? ..(2.47)

M (EL)

_16.8 B(E2) 16.8x10° B(E2)

2
\M(EZ)\W,U—AM-eZ.fm[l T ..(2.48)
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2-3 The Relation Between Upward and Downward B(E2)
Suppose two nuclear states, J; is the spin of the initial state and J; is
spin of the final state as in figure (2-1).

The relation between the reduced transition probabilities is given by *1 ;

2J. +1
B(E2)T= 2 +1B(E 2)4 ...(2.49)
J
B(E2)| B(E2)?
\4 Ji

Figure (2-1): The upward and downward electric quadrupole reduced

transition probabilities.
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2-4 Internal Conversion Coefficient

The internal conversion coefficient can be written as a sum of partial
coefficients each of which corresponds to the particular atomic shell of
the emitted electron (K, L, M.....), thus ™!

oot (EOM L) =ay (EorM ,L)+¢, (EorM ,L)

..(2.50
+ay (EorM L) +-- (2:30)

If the electrons from different orbits in the L shell, the « conversion

coefficient can be further partitioned as M ;
o =a,ta, +ta,, ...(2.51)

Recently the internal conversion coefficient has become widely used
as a source of information about the structure of nuclear levels.
The multipole mixing ratio ¢ for y-transition from excited levels can be
calculated by using total conversion coefficient, in a mixed transition

as follows 61 -

., _a(EoM,L)+a(EoM L +1)65°

= ..(2.52
tot 1+52 ( )

while in present work, the internal conversion coefficient was used to
calculate B(E2)1 values for pure E2 transition as mentioned previously in
eq.(2.14) and eq.(2.44).

2-5 Deformation Parameter Evaluation from Reduced

Transition Probability

Deformation parameter  can be related to the electric quadrupole

reduced transition probability B(E2) by the formula ¥ :
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4z (B(E2)Ted?Y"”
= ...(2.53
P 3ZR°2( e’ ( )
R =1.2 A¥® fm
R?=0.0144 A" barn ...(2.54)
The single-particle deformation parameter is to be "1 :
1.59

Where Z is the atomic number.

2-6 Calculation of B(E2) Values by Experimental Method

and Theoretical Predications
2-6-1 Experimental Method

B(E2)t wvalues can be extracted from a level life time <t
measurements which are mutually related to ! ;

1
r=40.81x10"E * {B(elszz)q\} (1+a, )" (2.56)

Where E, and a are the y-ray energy in KeV and the total conversion

coefficient, respectively.

2-6-2 Global Best Fit (GBF)
According to the global systematic, a knowledge of the energy E
(KeV) of the 2" state is all that is required to make a prediction for the

2 value P2, Boher and

corresponding z, (Ps) and hence B(E2)t e’b
Mottelson “®“**%1 have derived simple expression for the 7, values as

follows ;
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7, =0.6x10%E “Z *A"" .(2.57)

Using equations (2.56, 2.53) the corresponding B(E2)1 and g predictions

are given by 17 :
B (E 2) T=(2.57+0.45)E 7 A" .(2.58)
S =(466+41)E 2A~ (2.59)

Even though, the absolute global best fit B(E2)1 predication differs
from some measured values, a simple renormalization often brings the
predictions in better agreement with the measurements. The "global best

fit " values are taken from eq.(2.58) #2 .

2-6-3 Theoretical Predictions
1- Single Shell Asymptotic Nilsson Model (SSANM) :

One of the simplest theoretical models for understanding the
B(E2)1 is the SSANM, which is based on "A nucleus is as deformed as it
can be in a single shell”. This model has been discussed at some previous

papers %% where the B(E2)1 values (in units of e?b®) are given by :

5 2
B (E 2) T:W[eon] (Q.#0) ..(2.60)

Where Q. is the intrinsic quadrupole moment.

2- Finite-Range Droplet Model (FRDM) :

In the FRDM P4 the nuclear ground-state shapes are calculated by
minimizing the nuclear potential energy function with respect to ¢, s,
g4 and gg shape degree of freedom. More details about this model are in

refs,[5556]
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Chapter Three
Results, Discussion and Conclusions |

3-1 Results and Calculations

Electromagnetic properties for many even-even nuclei in 4Pd, 4Cd,
505N, are studied in present work through :
3-1-1 Calculation of Transition Strength [M(E2)|* w. |

The electric quadrupole transition strengths |M(E2)] w. | for

yo-transition from first excited 2; state to the 0; ground state are

calculated as a function of neutron number (N) with aid of experimental

data reported in ref.[8].

The results of the calculation to |M(E2)|2 wu | are tabulated in tables

(3-1, 3-2, and 3-3) for 50Sn, 44Cd and 4Pd respectively.

These tables can be described as follows :

1- The mass number A, neutron number N, with initial level energy E;,
Yo-transitions energy E,, = and half-life times ty, of the initial state are
presented in columns 1, 2, 3, 4 and 5, respectively from each table.

2- Mean life times t for 2, state whose half-life times t;, for it reported

in ref.[8] calculated by the relation (2.11) and presented in column 6.

3- Total gamma widths T", calculated by eq.(2.31) presented together with
partial gamma widths in W.u calculated by eq.(2.37) in columns 7, 8
respectively.

The partial y-width I'(E2) for y-transition is calculated as follows :
According to the electromagnetic y-transition selection rules for parity
and total angular momentum egs.(1.1, 1.2, and 1.3) there is only one
transition for gamma from j* = 2" state to j © = 0 is y, with intensity

(100%) E2 for each even isotope under consideration.
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According to eq.(2.34) the values of gamma width I, listed in column 7

can be considered pure I', (E2)ex, Values for y,-transitions.

4- The electric quadrupole transition strength |M(E2)|*w., | for each
Yo-transitions can be calculated by dividing the partial width T", (E2)exp
obtained in step 3 by the corresponding partial gamma width
inW.uT, (E2)w., €9.(2.35) was used and the values were presented

in column 9.

3-1-2 Calculation of Reduced Transition Probabilities B(E2)
The results of the calculation to B(E2)w, | are tabulated in tables

(3-4, 3-5, and 3-6) for 5,Sn, 48Cd and 45Pd respectively.

These tables can be described as follows :

1- The total internal conversion coefficients calculated by eq.(2.50) and
presented in column 6, where the values of partial coefficients each of
which corresponds to the particular atomic shell of the emitted electron
(K, L, M.....) are taken from ref.[57].

2- The half-life times for gamma transitions ty/, (y) (E2)ex, Were extracted
from relation (2.14) and presented in column 7.

3- The half-life times for gamma transitions ty;, (y) (E2) in W.u were
calculated by eq.(2.18) and presented in column 8.

4- The reduced transition probabilities B(E2)| in W.u were calculated

from eq.(2.44) and presented in column 9.

It is clear from tables (3-1, 3-2, 3-3) and (3-4, 3-5, 3-6) that the
present results to the |[M(E2)* w. | Vvalues are in excellent agreement with
present B(E2)w., | values for all even isotopes of 5Sn, 4Cd and 4Pd

nuclei.
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To get results of precise, the adopted values for |M(E2)]* w. | and
B(E2)w., | were calculated as adopted B(E2)w,, | and listed in column 6
from tables (3-7, 3-8, and 3-9).

In order to get good information about the nuclei under the
consideration, the adopted values plotted as a function for neutron
number N as in figs.(3-1, 3-2, and 3-3) to 5Sn, 4Cd and 4Pd
respectively.

For the sake of comparison with the experimental values of
B(E2) 1 e°b” for others as well as with others various theoretical models,
the present values for the adopted B(E2)w. | were converted to
B(E2)eT ¢’b° by using eq.2.5) and then eq.(2.49), each of
B(E2)epl €0° and B(E2)e,! €’b” listed in column 8 and 9 of
tables (3-7, 3-8, and 3-9) for 5,Sn, 4,Cd and 4Pd respectively,
while B(E2)s,| e’b® was calculated from eq.(2.7).

The comparison presented in tables (3-10, 3-11, and 3-12) and plotted
as a function for neutron number N in figs.(3-4, 3-5, and 3-6) for 5Sn,

48Cd and 4Pd respectively.

3-1-3 Calculation of Deformation Parameter g

Deformation parameter for even-even 5,Sn, 4Cd and 4Pd nuclei was
extracted from relation (2.53) presented in column 5 of tables
(3-13, 3-14, and 3-15) respectively, the B(E2)ex, 1 ¢°b” values which were
obtained in sec.(3-1-2) were used, and the values of nucleus radius
obtained from eq.(2.54) were presented in column 3 of the same tables,
also the calculated g values of y,-transitions for 5oSn, 44Cd and 4Pd nuclei
are compared with the experimental values of ref.[22] which were

presented in column 6 of the same tables.
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Figure (3-1): The adopted values of B(E2)w, | for yo-transition as

a function of neutron number (N) in 50Sn nuclides.
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Figure (3-2): The adopted values of B(E2),, | for yo-transition as

a function of neutron number (N) in 4Cd nuclides.
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Figure (3-3): The adopted values of B(E2)w, | for yo-transition as

a function of neutron number (N) in 4Pd nuclides.
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Figure (3-4): Comparison between the B(E2) 1 e¢’b® values of the present

work for 5,Sn nuclides with experimental and other theoretical results.
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Figure (3-5): Comparison between the B(E2) 1 ¢’b” values of the present

work for 4Cd nuclides with experimental and other theoretical results.
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Figure (3-6): Comparison between the B(E2) 1 ¢’b” values of the present

work for 4Pd nuclides with experimental and other theoretical results.
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3-2 Discussion and Conclusion

The variety of different shapes for nuclei have been observed
and / or predicated that depends on the neutron to proton ratio and on the
conditions of excitation energy or spin of nuclei P .
Present work focused on effect of the excitation energy and reduced

transition probabilities B(E2; 2; —0;) versus the neutron number in

isotonic chains on the variation of the nucleus shapes, because the
quadrupole deformation parameter S extracted from the reduced transition
probability B(E2)ex, 1 €°b%

The best results which we obtained from 2; excited state in rich

neutron nuclei, such as 5Sn, 4Cd and 4Pd helped us in predicting the

nuclei shape, this can be explained in the following articles.

3-2-1 Isotopes of Tin

Magic nuclei have very few excited states at low excitation energy,
their low transition probabilities include low collective motion for
nucleons and indicate the validity of single shell model 2.

Fig.(3-4) shows the reduced transition probability B(E2) 1 e¢’b® as a
function of neutron number in isotonic chain ranging between 62 and 74
for Sn nucleus have the magic atomic number Z = 50.

The B(E2) 1 e’b® values for '2Sn is 0.243(9) e’b® and for **Sn is
0.254(36) e’b* which confirms larger B(E2) 1 e¢’b® value belong to the
lighter tin isotopes.

on the neutron rich side of the 5Sn chain with the range 62—74
there is almost constant plateau with minimum values to B(E2) 1 ¢°b?

which support the magic nucleus has a large number of stable isotopes.
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Also we can observe from table (3-13), the maximum g value is
0.125(47) for ***Sn, while the minimum value is 0.095(14) for ***Sn, from
the values of B(E2) 1 ¢’b” and S can be concluded that '**Sn isotope
which could close the proton and neutron shells is more stable than others
tin isotopes.

In general all tin isotopes under the present study are deviated from

spherical shape but with a small different percentages.

3-2-2 Isotopes of Cadmium
The values of reduced transition probabilities B(E2) 1 e°b® to first
excited state 2] in semi-magic nuclei as in magic nuclei are usually

correlated with the excitation energy, the low values to B(E2) 1 ¢*b® is
correlated with the low excitation energy ..

Let us now come back to the B(E2) 1 ¢°b? curve, for isotonic chain with
the 58 <N <70 to the semi-magic nucleus of Z = 48.

The B(E2) 1 ¢’b® has not constant plateau as in 5,Sn, where B(E2) 1 ¢°b?
increased slightly with neutron number increase.

Low transition value for *®Cd with closed shell at N = 58 versus low
excitation energy indicated any excitation can overcome the gap 2.
According to this explanation, the deformation parameter £ which is
extracted from B(E2) 1 ¢’b? increases in range between 58 and 70 as in
table (3-14) with the minimum value for f is 0.167(6).

From the values of B(E2) 1 e°b* and A can be concluded that '°Cd isotope

is more stable than others and with less deform in shape.
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3-2-3 Isotopes of Palladium
Near closed shells spherical shape prevail, while between closed
shells there is a large number of nucleons this leads to dominance of

collective motion and a variety in shapes can be observed in ground state.
If the same nucleus is excited from the ground state to 2, state, the

deformation in shape can be studied through the excitation energy and
reduced transition probability B(E2) 1 ¢°b’.

In present study of palladium nucleus of atomic number 46 between
closed shells 40 and 50, with isotonic chain ranging between 70 and 56,
the study did through the calculation for B(E2) 1 e°b* as a function for
excited energy versus neutron number as follows :

1- In the range of 56 < N < 64 the B(E2) 1 ¢’b” values are inversely
proportional to the excitation energy of the 2; state as seen in table (3-9)

and suggested in ref.[60]. The E2 transition strengths hindered via the
high excitation energies.

2- The values of B(E2) 1 ¢?b® for ****Pd were deviated from the values
of our expectation and the suggestion of ref.[60] as in table (3-9),
special the measured value B(E2) 1 e’b’to "*Pd taken the minimum
values in the curve, that goes to the suppressed proton collectivity in
121%d and that points out the dominance of the large neutron
collectivity shared the interference between the nuclear and

electromagnetic interaction in the excitation from the ground state to the
27 state Y which indicated the "*Pd has few excited states even in the

comparison with **°Pd of a sub-shell closure at N=70, its B(E2) 1 ¢’b?

value higher than that for ***Pd.
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Since the deformation parameter f relates B(E2) 1 ¢°b® directly, so
the minimum value is # = 0.158(73) for ***Pd.
In general all the values for f to the 4Pd isotopes under the study are
large as in table (3-15), the value of A is 0.260(58) for '°Pd it is too large
if it is compared with value 0.3 for the nuclei stable permanent
deformation (150 < A < 190) 1.

The low energy of the first excited 2, state and the large transition

probability are in agreement with such a deformed shape.
However the minimum for B(E2) 1 e°b” in curve of fig (3-6) and S of
table (3-15) at N = 68 give predication ***Pd is more stable in isotonic

chain to 4Pd.

3-2-4 Comparison between Experimental and Theoretical

Results

The B(E2) 1 e°b? values are basic experimental quantities that do not
depend on nuclear models %4, it is always accurate values calculated with
associated errors as tables (3-10, 11, and 12) showed. While the values of
B(E2) 1 °b? of nuclear models are calculated without associated errors as
shown in the same tables, so they are un accurate values.

Thus nuclear models sometimes depend on empirical formula or on
terms assumed by theoretical physicists through their studies, that pointed
to the nuclear models which often give predicted values.

Our work gave an excellent agreement for the present values of
reduced transition probabilities B(E2) 1 e°b” and deformation parameters
S with those of experimental of ref.[22] which provided the most accurate
comparisons to theoretical values which are taken from different nuclear

models.
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3-3 Suggestions and Future Works
We suggest some future works :

1- Study the other isotopes of 50Sn, 4sCd and 4Pd that didn't study in this
work.

2- Study the other properties of this even-even nuclides depending on
current results such as the quadrupole moment (Q).

3- Use the interacting boson model (IBM) to study the excited structure
for this even-even nuclides and noticed the effect of this model on the
results.

4- Study the even-even or even-odd or odd-odd isotopes for other

nucleus.
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